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PREFACE

® This study was conducted as part of the Independent Research Program of the
: Institute for Defense Analyses, under which significant issues of general interest to the
: defense research community are investigated.
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DESCRIPTION OF THE PROBLEM

The offensive force consists of A identical, perfect attackers which we think of as
® RVs. The defense is a two-layer defense consisting of an area defense and terminal
defense. All defensive weapons are perfect, so they destroy an incoming attacker if aimed

atit. The targets have value v(i) for i=1,...,T, and we order the targets so that

v(l) 2 v(2) 2...2v(T).

The terminal defense is preallocated, with the number of interceptors at target i
equal to v(i). The area defense can operate in two different modes - (1) without impact
point prediction and (2) with impact point prediction. In the first case, no ipp, the area
e defense selects B of the A incoming RVs at random and fires interceptors at those RVs to
kill them. (B is the number of area interceptors.) The RVs surviving continue to their
respective targets, where they encounter the terminal defense. The terminal defense
engages the RVs and if any RVs penetrate, the target is destroyed. In the second case, with
' w ipp, the defense can see the structure of the attack and then, with this knowledge, allocate

the area interceptors to specific RVs. For any attack, the total value destroyed will be

greater in case (1) than in case (2), assuming that the defense employs the best strategy in

the area defense layer. The problem is to find the optimal attacks in both cases (optimal
® meaning greatest expected value destroyed) and to examine quantitatively the difference
between the two cases.

IL. A SIMPLE EXAMPLE AS A GUIDE TO UNDERSTANDING

T In order to illustrate many concepts we will consider the following fairly simple
situation:

* targets of value 10, 8, 5, 2, 1
. + area defense, B=5
« number of attackers variable.

First consider the case with no ipp. Suppose the attacker has 10 weapons. His
problem is to decide how to distribute the 10 weapons so as to maximize the expected
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damage, knowing that the defense does not have impact point prediction. Some points are
clear:

« If the offense clects to attack target number i then it is useless
to aim a number of RVs less than or equal to v(i). So in our
case, the offense should not attack target 1 at all, if he attacks
target 2 he should use at least 9 of his weapons, etc.

« If two targets, say target i and target j are attacked, then ifi < j
(so that v(i) 2 v(j)), then an optimal attack must have

a(i) - v(i) 2 a(j) - v(),
where a(k) is the number of attackers aimed at target k.

Professor Soland has written a dynamic programming algorithm to determine the

optimal targeting for the attacker. Appendix A contains a short description of his
algorithm.

Using his algorithm we find that with 10 weapons the optimal attack is

a(l)=0
a2)=0
a(3)=0
ai4)=17
a(s) =3,

and the expected damage is 2 1/3.

I have programmed the algorithm in FORTRAN on IDA's VAX 785 and run it for
different numbers of attackers. A listing of the program and the outputs from its various

runs can be found in Appendix A. The cases treated there are of area defense equal 5, 15,
25, 35, and 45.

The results are shown in Figure 1. The solid curves show the cases B=5, 15, 25.
In each case the shape of the curve is similar, with a staircase at low attack levels and a
smoother curve sloping to the right at higher attack levels.

Consider now the case where the area defense has impact point prediction. When
the defense has ipp, the offense's optimal attack changes. There are two basic strategies
that I have defined for the offense (1) shoot-to-kill and (2) defense dilution.
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With the first strategy, the offense chooses a list of targets to attack and then attacks
a target of value v with v+B+1 RVs. This shoot-to-kill attack effectively renders the area
defense impotent to defend the target because even if the defense were to use all of his B
area interceptors to defend the target, v+1 RVs will still penetrate to the terminal defense
which consists of v interceptors -- the target is destroyed. Thus, at each attack level, the
optimal shoot-to-kill strategy consists of picking the largest aggregate target value to attack
subject to the condition of having enough RVs to attack a target of value v with v+B+1
RVs.

The maximum damage possible at each attack level for B=5, 15, 25, and 35 using
the shoot-to-kill strategy can be found in Appendix B.

It turns out that the shoot-to-kill strategy is optimal for the offense when either the
attack level is small and/or the number of area interceptors is small. In fact for B=5 and 15
discussed above, the shoot-to-kill strategy is optimal at all attack levels.

However, when B=25 (so we no longer have B "small") and A=62 (so the attack
level is not "small") the shoot-to-kill strategy is not optimal. To prove it is not optimal, I
shall demonstrate a better strategy. The optimal shoot-to-kill strategy would be to attack
just the target of value 10 because no other feasible combination has a higher value
destroyed. However consider the attack

a(1)=10+13=23
a2)= 8+13=21
a3)= 5+13=18
a@=0
a(s) = 0.

The defense, with 25 area interceptors, can save only one of the three targets attacked. To
minimize his losses, he will save the value 10 target, so the offense destroys the targets of
value 8 and 5 for a total damage of 13.

The offense has diluted the defense by attacking more targets than with the shoot-
to-kill strategy. The offense does not dictate which targets will be destroyed with certainty
but leaves that choice to the defense. What the offense can guarantee is the total damage.
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Further properties of the defense dilution strategy will be examined n the next
section.

By examining the possible attacks for the cases B=5, 15, 25 we can find the '
optimal attacks, as well as the expected damage. These results are plotted on Figure 1 as
the dashed lines. Note that for a given number of area interceptors, the curve for ipp is
always to the right and below the curve for no ipp.

The quantitative comparisons we will be making between the two curves will take
the form:

To achieve a specified damage level, what percentage more RVs
must the offense expend when the defense has impact point prediction, as
compared to the case when the defense does not have ipp?

For the cases B=5, 15, A25, and v=13, 20 the results are shown in the lower right-
hand comer of Figure 1. For example, with 15 area interceptors the offense needs 54.5%
more RVs to achieve a damage level of 20 when the defense has ipp than when it doesn't.
Stated another way, if the offense can deny the defense impact point prediction (for
example by maneuvering after the area defense layer) then the offense, to achieve a damage
level of 20, can reduce his forces by approximately 1/3 (= .54/1.54).

III. THE DEFENSE DILUTION STRATEGY

When the defense has many interceptors, the shoot-to-kill strategy is nonoptimal
because the cost to attack a new target is high relative to its value. What is called for is a
new strategy which we name the defense dilution strategy.

Suppose that the offense attacks all of the targets in the target set, meaning that a(i)
> v(i) for all i. The area defense in his choice of which targets to defend (there is ipp) must

solve a knapsack problem:
2.ziv().

z € {0 1}
le(a(l)—v(l) <B

This is generally a difficult problem to solve exactly. One heuristic solution would be to
order the "densities"




v(i)

a()-v(1)
in increasing order, and then let
. J1isk
%=1 15k e

where

- X
- k=MAXst Y, (@@(i)-v(i)<B.

) X 1=1

A - k

3 N The value saved is l'.he:iv(i). However, this leaves B - ) (a(i)-v(i)) area interceptors

..* 1= 1=

:I unutilized, so that we suspect this is not optimal for the defense.

> In fact, it is easy to make up examples where this strategy is not optimal.
. However, this strategy results in a value destroyed which is at most v(k+1) more than
__.C optimal, so if the target values are small relative to the total value, then the percentage
';:; difference between the two is small.
' We can consider the continuous (or partitionable item) knapsack problem

N

T - .

» MAX 3z v()
o~ z;£[0,1]

, 2.7 (a(i)-v(i) S B

3_ which has the solution

iy B

1 isk

~ k

N B - (ai) - v(i))

g zZi= 9 i=1 = kel

N a(k+1) - v(k+1) -k

n

- , O i2k+2.

y
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Y The answer to this problem is at most v(k+1) greater than the original knapsack
i' problem value. So again, if v(k+1) is small relative to the total value, the percentage
)
E difference is small.
:: The offense's problem is what might be called the "knapsack game":

MIN MAX Yz v(i)

Yai=A _ ze{0,1}
a@)>v(i) Y, %(adi)-v() < B

If the inside problem were the partitionable item knapsack problem (z; €{0,1}

instead of z; €{0,1}), which we assume is a good approximation, then the solution of the
outside problem is to take a(i) such that

R 1SR, R Nar e e

v(i) _ .
C VD - constant for each i,
i.e.,
:: ' V! i! A
: a(i) =g A.
: D50
! o
F (Note that we are letting a(i) be rational, but again this game is a good approximation to the
E game where a(i) is integral.)
;: This is what might be called the Proportional Attack Theorem. When the offense
L uses this attack, the value of the continuous game is '
VALUE ..__B
SAVED = 2VO 736
If we let V = Yv(i), then we have
C VALUE _ y(1- _B_)
- DESTROYED A=V

Note however that at low attack levels the offense will not attack all of the targets (the
, above assumes that all of the targets are attacked). Let us assume that the offense will
L attack a fraction f of the total value. Then

80 = premayen= TV 1- 7ot

2
'y
- L L AN L f 8 8. AN eTeas s on s A




The offense will pick f so that this is maximized. Taking the derivative,

dg _ \" 2
Efg'—m{(:\-fv) - AB}

so that at the maximum

fV = VA (K - VB).
If V< VA (VA -vE)
then VALUE _ _JE Y
DESTROYED (VA - ¥B)

These formulas constitute the defense dilution strategy. For a more exact analysis of this
knapsack game and the defense dilution strategy, see Appendix C. The algorithm there
was never implemented - instead it was used as justification of the two formulas above for
the expected value destroyed.

AT
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X : IV. LARGE SCALE PROBLEMS WITH ONE AREA
\ In the process of solving the ipp vs. no ipp on a nationwide scale, we will
: ° encounter rather large size problems, in the number of targets, number of interceptors and
. number of attackers.
o g
number of targets is 43 - 80
s 430 -
° The range of =< total target va.lluc is 430 - 800
number areaint is 43 - 800
number attackersis 50 - 2000.
-
As an example of the qualitative results for large scale problems compared to the small
|

example in section II, I present the following situation

5 targets of value 20

10 targets of value 10

P targets =4 12 targets of value 5

Total value = 260

Number of area interceptors = 50,150,250.

-

® The results are shown on Figure 2. As we see, the no ipp curves have become
nearly lines and the ipp curves have smoothed quite a bit, except at the lower end where the
shoot-to-kill strategy with its characteristic staircase shape is present.

The solid curves were calculated at 25 step intervals using Soland's algorithm and

, < the dashed curves were calculated as a combination of stk and dd strategies.
I cannot account for the linear shape of the no ipp curves at present. However, they
seem to be approximated by lines joining the following two points

€ (B,0) and ((B+T+V) (1+a), V)
' where T = number of targets and « is some number between .10 and .20.
| &
. 9
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Perhaps there is some sort of Proportional Attack Theorem so that the distribution of RVs

o arriving at the terminal defense of target i (i.e., through the area defense) would look like
|
N - J MEAN=
. ° v(i) ai) (1= 2y o vii) (IF ali) o vil)

See Appendix F for a little further explanation.

Computationally, it would be a great benefit to have some good approximation
| © because computing the no ipp curves is the largest computational burden. The calculation
' of one of the curves for a large problem was taking = 5 hours of CPU time.

Appendix F contains a thorough analysis of the structure of optimal attacks, which
leads to an approximation for the expected damage in the no ipp case.

L
; V. LARGE SCALE PROBLEMS WITH MANY AREAS - NATIONWIDE
DEFENSE
We have 30 nonoverlapping areas (which we call citadels) with targets in each and
@ independent area defenses in each.

The target structure of the citadels is shown on Figure 3. In a given row of the
table, we read across the number of the citadel(s) with the particular target structure, the
number of targets of value 200,100,20,10,5 and the total target value.

C
The total target distribution is
5 targets of value 200
10 targets of value 100
.
140 targets of value 20
800 targets of value 10
v 1000 targets of value 5
&
c\

............... .
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for a total of

1955 targets with total value 17,800.

I ran three different cases of the problem:

A. Area defense
B. Area defense
C. Area defense

In each case I computed the no ipp and ipp curves for each of the individual citadels

and then used dynamic programming with a step size of 50 to determine the optimal attack
against the nationwide target set.

= 10% of target value

40% of target value
= 100% of target value.

1-6
7-12
13-18
19-20
21-23
24-25
26
27
28
29
30

Totals:

Number of Targets of Given Value

Citade] Number 200 100 20 10

0 0 2 30
0 0 5 20
0 0 8 30
0 0 0 50
0 1 7 20
0 2 3 40
1 0 2 20
1 0 3 15
1 0 10 15
1 1 4 15
1 2 4 15
5 10 140 800
1955 Targets
17,800 Value

3
18
50
36
30
20
28
50
40
30
50
30

1000

Value
430
550
640
650
540
800
690
610
700
780
780

Figure 3. DATA SET USED IN THE MULTI-CITADEL CASE
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A. Areadefense = 10% of value ‘
@
The results are shown on the following four pages as Figure 4 and Tables 1 and 2. ‘
There is approximately a 33% difference in the no ipp and ipp curves. Appendix D '
contains the curves comparing no ipp and ipp for the individual citadels. :
| @ .
B. Areadefense = 40% of value
The results are shown in the same format as those of the 10% case, and are .
displayed as Figure 5 and Tables 3 and 4. There is approximately a 75%-85% difference :
L between the no ipp and ipp curves. See Appendix E for further results.
C. Areadefense = 100% of value
For this case, because of the lengthy computation time, I used the approximation
¢ derived in Appendix F for the no ipp curves. There is a 125% difference between the no
ipp and ipp curves. See Appendix F for the results in this case.
L
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The percentage difference between the number of attackers needed with and without ipp to
obtain three different damage levels when the area defense equals 10 percent of the target

value.

Table 1. Area Defense = 10% of Value

Value

4,450
(1/4)

8,900
(1/2)

13,350
3/4)

17,800
(all)

Number of Attackers
no ipp ipp
5,900 7,900

12,150 16,200
18,450 24,750
27,450

Percentage

Difference Difference
2,000 33.9%
4,050 33.3%
6,300 34.1%

15




Table 2. TARGET SET OF 30 CITADELS
Area Defense = 10 percent value

<u

» a‘.r " .r oy _.'_.f_.f!..'_.r P

Attackers no ipp ipp
1000 773.67 630.00
2000 1537.42 1249.74
3000 2284.42 1817.14
4000 3031.42 2351.64
5000 3777.03 2888.61
6000 4515.46 3425.91
7000 5251.23 3962.14
8000 5976.14 4498.07
9000 6684.60 5034.15

10000 7393.58 5570.92

11000 8102.04 6106.84

12000 8810.53 6642.76

13000 9516.66 7178.31

14000 10223.45 7714.23

15000 10926.22 8251.00

16000 11633.89 8785.77

17000 12336.13 932253

18000 13034.26 9857.24

19000 13728.13 10392.85

20000 14420.93 10928.71

21000 15118.95 11463.16

22000 15807.29 11995.89

23000 16500.12 12508.39

24000 17131.27 12986.21

25000 17534.75 13472.32

26000 17721.97 13934.17

27000 17788.48 14347.01

28000 17800.00 14686.42

29000 17800.00 14968.50

30000 17800.00 15195.92

31000 17800.00 15397.85

32000 17800.00 15565.93

33000 17800.00 15714.10

34000 17800.00 15841.92

35000 17800.00 15956.75

Continued
16
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® TABLE 2. CONCLUDED
Attackers no ipp ipp
36000 17800.00 16057.79
® 37000 17800.00 16148.92
38000 17800.00 16230.27
39000 17800.00 16305.14
40000 17800.00 16372.81
. 41000 17800.00 16433.81
o 42000 17800.00 16490.35
43000 17800.00 16542.21
44000 17800.00 16590.32
45000 17800.00 16634.82
. 46000 17800.00 16676.11
e 47000 17800.00 16714.71
' 48000 17800.00 16750.64
49000 17800.00 16784.30
50000 17800.00 16815.93
® Expected damage levels for different numbers of attackers with optimal attacks and

defenses in the cases of ipp when the area defense equals 10 percent of the target value.
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Table 3. Area Defense = 40% of Value
L4 Number of Attackers . Percentage |
Value no ipp ipp Difference Difference
4,450 7,850 13,900 6,050 77.1%
(1/4)
o 8,900 16,000 28,600 12,600 78.8%
. (172)
13,350 24,400 45,000 20,600 84.4% '
(3/4)
¢ 17,800 35,150
(all)
The percentage difference between the number of attackers needed with ]
N, and without ipp to obtain three different damage levels when the area
® defense equals 40 percent of the target value.
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TABLE 4. TARGET SET OF 30 CITADELS
Area Defense = 40 percent of value

........

Attackers
1000
2000
3000
4000
5000

6000
7000
8000
9000
10000

11000
12000
13000
14000
15000

16000
17000
18000
19000
20000

21000
22000
23000
24000
25000

26000
27000
28000
29000
30000

31000
32000
33000
34000
35000

no ipp
571.06
1141.96
1708.47
2277.82
2852.13

3414.18
3977.21
4532.07
5087.93
5646.87

6188.95
6744.81
7277.76
7817.72
8352.77

8885.43
9424.26
9963.09
10491.94
11026.02

11564.85
12091.34
12623.87
13154.54
13682.89

14205.98
14729.07
15252.16
15775.25
16298.34

16821.43
17251.72
17251.72
17692.32
17791.93

ipp
400.00
800.00
1100.25
1438.75
1740.99

2046.36
2349.46
2652.86
2956.15
3259.54

3562.59
3865.99
4169.06
4472.23
4775.65

5078.92
5382.19
5685.22
5988.34
6291.61

6594.88
6897.80
7201.03
7504.30
7807.57

8110.49
8413.49
8716.54
9019.54
9322.54

9625.44

9928.51

1023.51
10529.98
10830.37
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Table 4. CONCLUDED

Attackers noipp ipp
36000 17800.00 11127.66
37000 17800.00 11418.10
38000 17800.00 11705.17
39000 17800.00 12002.46 <
40000 17800.00 12251.41 1
41000 17800.00 12519.97
42000 17800.00 12759.36
43000 17800.00 12973.59 ,
44000 17800.00 13169.69 :
45000 17800.00 13348.16 i
46000 17800.00 13511.36 :
47000 17800.00 13662.50 i
48000 17800.00 13801.10 '
49000 17800.00 13931.17 |
50000 17800.00 14051.49 ]

Expected damage level for different numbers of attackers with optimal attacks and
defenses in the cases of ipp and no ipp when the area defense equals 40 percent of the
target value.
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VL. COMPUTER PROGRAM DOCUMENTATION

All of the calculations were done on the VAX 785 system at IDA with programs

written in FORTRAN.

The no ipp programs were run in a batch mode. Since I didn't (and still don't)
know how to read data from a file during the execution of a FORTRAN program, each
different batch job consists of the same basic program that does the work, with different
"front ends"” contouring the data used in that particular job. The .for program is explained

in Appendix A. The other files are self explanatory.

In case other people would like to access my files, here is a diagram of my directory

structures:

USE: [MFINN.UNCLASS]

[.DEFENSE]

[.BATCH]

[.PER10] [.PER40) [.PER100]

In the subdirectory [ DEFENSE], the following files may be found:

DYNAM10.COM - compiles, links and runs DYNAM10.FOR

DYNAMI10.FOR - uses dynamic program to integrate all 30 citadels

THE10ANSWER.DAT - output from DYNAMI10.FOR attack step size is 50
THESHORT10ANSWER.DAT - shortened form of the above file - step size = 1000

DYNAM40.COM
DYNAM40.FOR

THE40ANSWER.DAT
THESHORT40ANSWER.DAT

-

~—

same as above except now

area defense = 40% of value instead
of 10% of value

¢




¢

In the subdirectory [ BATCH.PER10], we find the files
RUN1ONUMB%%%.*
where %% % is 001, 002, 003, ..., 011 and * is .com, .dat, .for, .log.

The numbers %%% refer to the data sets from the list of citadel structures (there are
11 citadel structures and 11 different file types). Also, area defense = 10 percent of value
for each citadel.

Similarly, the subdirectories [.BATCH.PER40] and [.BATCH.PER100] contain
the files

RUN4ONUMB%%%.* and RUN10ONUM%%%.*

where for the first of those, area defense = 40 percent of value, and for the second, 100
percent of value.
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APPENDIX A

DESCRIPTION AND IMPLEMENTATION OF SOLAND'S ALGORITHM
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®
o The following is a short description of a dynamic programming algorithm due to
b Prof. Soland that appeared in an IDA memo dated 18 July 1985. Because we are
concerned with thc case of perfect attackers and perfect defenders there are some
simplifications.
o
There are A attackers, B area defenders, T targets with the value of target i equal to
4 v(i), and at target i there are v(i) terminal interceptors.
' For i=1,2,...,T and x=0,1,...,A, let

W: (x) = the expected target value destroyed at target
1 i if x RVs are assigned to it by the attacker.

Since at target i there are v(i) perfect terminal defenders, we see that

the probability that more than v(i) RVs arrive at the
W; (x)=v(i)* < terminal defense of target i, given that x RVs were
aimed at it.

An elementary "ball and urn" argument shows that the distribution of the RVs through the
area defense at each target is hypergeometric, so

X A- B) ( B )
W; (X) = v(i) Z Xy
y=v(i)+1 (A)

To find the optimal attack we first calculate Wi (x) for i=1,2,...,T and x=0,1,...,A,
and then apply a dynamic programming algorithm. In particular, let

u —
s(u,r) = MAX X Wi@z)

u
2 i
i=1

z; anon-negative integer
for u=1,2,...,T and R=0,1,...,A. We can calculate these s(u,r)'s recursively by letting
s(Lr) = W (r)
for r=0,1,...,A, and then

A-1

sy %5 WY E



STa

s(ur) = MAX {V_Vu(z)+ s(u-l,r-z)}
z=0,1,...,r

for u=2,3,...,T and r=0,1,...,A.
The answer we are seeking is then just s(T,A).

This algorithm is implemented in the FORTRAN program reproduced as Figure A-
1. Itis the basic program used to calculate all of the curves in the later appendices when the
area defense does not have impact point prediction .
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DRAA:[1FINN-UNCLAS$-dAICN-PER1UJRUNIONUH3001.FQR;!

(aNalall

DECLARING THE VARIABLES
REAL wEBAR(D:100,0:5000)
REAL SUM(0:100,0:5000)
REAL Vv(0:100)
REAL S$(0:5000)
@ REAL I,JoLsXsY INIT,EBNN,T
REAL AsCsDsKsPKAREA,MOON,
REAL LEIN,ANSY

e

0PEN (UNIT=10, FILE=*RUNIONUM3Q01.DAT?!, STATUS='NEw')

@ INIT=SC
3=63
N=50CC
STEP=5C
T=50
DO 2 I=1,2
v(I)=20
¢ 2 CONTINUE
DO I 1=3,32
v(1)=10
3 CONTIMUE
pO0 <« I=33.50
v(I)=5
I3 CONTINUE
o MAXV=V (1)
v(0)=v(1)+8
WRITE C10,%)° THERE ARE®,B," AREA INTERCEPTORS WITH PK =",PKAREA
WRITE (10,+)°THE TARGET VALUES ARE’
WRITE (10,2) (V(I), I=1.T)
dRITE (10,#) * ¢
00 1 I=1,T7
o VALUE=VALUE ¢V(1)
1 CONTINUE

DO 1000 A=INIT,N,STEP
ANSW=0

c THE CALCULATION OF WSARCI,J) FOR PERFECT AREA INTERCEPTORS
€ C (THERE ARE SHORTCUTS IN THIS CASE AS COMPARED TO THE
C GENERAL CASE.)
DO %2 x=0,v(0)

T T T T R T

D0 41 J=0,A
SUMC(X,4)=0.0
41 CONTINUE
l 42 CONTINUE
L DO 90 1=1,T
| - X=vV(I)
' Yav(I~1)
L IFCY=X.LEL10%x(~3))THEN
60T0 90
ENDIF
DO 60 J=X+1,X+8
() DO 55 I=X+1,MINCI,Y)

IF(A‘B".S-L'-Z)GOTO 55
IF(B8=u5.LT4J~2)60T0 55
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_DRAZLAF INNCUNCLASY AT APz TUIRUNTUNUYUNICUT . FORS T
_DRA2:[MFINN.UNCLASS.3ATCH.PERT0TAUNTIONUMBOO01.FOR, 1
_CRA2:UMFINNJUNCLASS.BATCH.PERTOIRUNIONUM300T.FORS T

IF(A=.5.LT.J)60TO 55
SUMIXsd)=SUMIX,J)TEXPCLIINCA=G,L) +LBIN(B,J-1)~LBIN(A,J))

55 CONTINUE
SUM(X,J)=SUMIX,J) ¢SUM(Y,J)
IF(SUM(X,J)eGELDJe?99)G0TO 30
46C CONTINUE
DO 70 J=Xx+1+8,A
SUM(X,J4)=1
7C CONTINUE
GO0TO 3C
ac DO 85 C=J.,A
SuUM(x,Q2)=1
35 CONTINUE
90 CONTINUE
00 92 I=1,T7
00 91 J=0,A
WRARCI,JI=V(I)*SUMIV(I),J)
91 CONTINUE
92 CONTINUVE
C DYNAMIC PROGRAMMING ALGORITHM TO FIND THE OPTIMAL ATTACK
00 120 R=0,A+.5
S(RI=WBAR(1,R)
120 CONTINUE
00 150 U=2,T-1+.5
00 140 R=0,A+.5
D0 130 1=0,A=R¢+,.S
SCA=R)ZMAX(SCA=R),WBAR(U, 1) +S(A=-R~-1))
130 CONTINUE
140 CONTINUE
150 CONTINUC
DO 160 1=0,A+.,5
ANSWEMAXCANSW, WBAR(T,Z)+S(A-2))
160 CONTINUE
C WRITNG THE QUTPUT--EXPECTED DAMAGE BY AN OPTIMAL ATTACK
WRITE (UNIT=10, FMT=2000) A, ANSW, (SQRT(A)-SQARY(B+1))ae?
2000 FORMAT(F12.0, 2 F12.2)
IFC(ANSW.GE.VALUE®_,98)GOTO 9999
1C00 CONTINUE
7999 END
4 THIS FUNCTION CALCULATES THE LOGARITHM OF BINOMIAL
C COEFFICIENTS B8Y USING STIRLING®S APPROXIMATION
C TO FACTORIALS
REAL FUNCTION LSIN(X,Y)
IF(XLY.0.5)THEN
A-4
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TpRA2:L4F INN.UNCLAS3.3ATCH.PERTOIRUNTONUME COT.FOR; 1
@ TORA2: [MFINN.UNCLASS-3ATCH.PERTOIRUNTONUMECOT. FOR; Y
L3IN=0.0
SLSE IFCY.LTeD.S)THEN
LAIN=0.0
SLSE IF(X-Y.LTa0u.5)THEN
LAIN=0.0
ELSE
® LBIN=LOGCSART(2¢3.1415926+ X)) +X*L0G(XI =X+ (1/(12¢X))
L3IN=L3IN-C(LOG(SART(243.16159264Y))+Y eLCG(YI=Y+(1/(124Y)))
LSIN=L3IN=(LOG(SART(2%3.1415926%(X=Y))))
L3INZL3 IN=COX=Y) #LOGCX=Y)=C(X=Y) ¢ C1/C12%C(X=Y))))
ENDIF
RETURN
o END
&
o
o
2
g
c
‘C'

B ar SR S8 ahatd gl
L

e

A-5

I EEL Ha i AR N

» .
t.’ 'n"-’ \-.'if'.'

\. ...-..-‘ -‘-.‘,;l'\.-" _.‘{ _\.. .._-. _‘...__ ‘-“" S e e
v W N LLL@LA}L\A ARV AR PSR



L4

‘-
A

X
o

.('. e A

XA

']

-
’..{A‘l L S M

’ .AA.T
<2

ARSI R,

................
.............................

The following presentations, Table A-1, are from the FORTRAN program in the case
where the target values are 10,8,5,2,1. This particular case is the one discussed in Section
I in the body of the paper.

TABLE A-1

Expected Value Destroyed by an optimal attack when the area defense is 5 inter-
ceptors without ipp.

Area Defense=5

Numberof Attackers ~ Expected Value Destroyed

16 10.00
17 10.00
18 10.51
19 10.85
20 11.50
21 11.87
22 12.27
13.07
14.07
14.80
15.02
16.81
17.59
17.91
18.41
19.12
19.59
20.33
21.51
22.27
22.60
23.18
23.85
24.36
24.79
25.22
25.46
25.66
25.80
2591

Continued
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TABLE A-1

Expected Value Destroyed by an optimal attack when the area defense is 15 inter-
ceptors without ipp.

Area Defense = 15
Number of Attackers Expected Value Destroved
26 10.00
27 10.00
28 10.21
29 10.47
30 10.79
31 11.30
32 11.65
33 12.03
34 13.08
35 13.91
36 14.46
37 15.14
38 16.38
39 17.11
40 17.57
41 17.84
4?2 18.44
43 18.98
44 19.61
45 _ 20.62
46 21.35
47 21.93
48 2231
49 22.81
50 23.38
51 23.87
52 24.17
53 24.60
54 24.99
55 25.23
56 25.42
57 25.58
58 25.70
59 25.80
60 25.86

Continued
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TABLE A-1
Expected Value Destroyed by an optimal attack when the area defense is 25 inter-
ceptors without ipp.
Area Defense =25
Number of Attackers Expected Value Destroyed
36 10.00
37 10.00
38 10.11
39 10.33
40 10.59
41 11.09
42 11.47
43 11.71
44 12.69
45 13.55
46 14.13
47 14.63
48 15.77
49 16.65
50 17.21
51 17.56
52 17.91
53 18.49
54 18.93
55 19.83
56 20.64
57 21.32
58 21.80
59 22.16
60 22.68
61 23.21
62 23.62
Continued
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. TABLE A-1 |
Number of Attackers Expected Value Destroyed
T 63 23.95
64 24.39
65 24.70
66 24.98
67 25.20
3 68 25.39
o 69 25.53
70 25.65
71 25.74
72 25.81
73 25.85
: 74 25.89
¢ 75 25.92
Continued
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i TABLE A-1 4
. 4
e Expected Value Destroyed by an optimal attack when the area defense is 35 inter-
e ceptors without ipp.
) fense =
|
2
;z_ 46 10.00
N 47 10.00
::: 48 10.07
49 10.27
50 1052 “
51 10.98
52 11.37
53 11.63
54 12.49
55 13.34
56 13.95
57 14.37
58 15.50
59 16.35
60 16.98
61 17.39 ®
62 17.65
63 18.19
64 18.67
65 19.39
66 20.23
67 20.89 o
68 21.44
69. 21.88
70 22.23
71 22.78
Continued
®
o
®
A-10
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TABLE A-1
Number of Attackers Expected Value Destroyed
72 23.25
73 23.63
74 23.98
75 24.35
76 24.65
77 2491
78 25.14
79 25.33
80 25.46
81 25.58
82 25.67
83 25.75
84 25.81
85 25.85
86 25.89
87 25.92
88 25.94
89 25.95
Continued
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TABLE A-1 Concluded ¢
Expected Value Destroyed by an optimal attack when the area defense is 45 inter-
ceptors without ipp.
Area Defense = 45 PN
Number of Attackers Expected Value Destroyed
56 10.00
57 1880
58 10.05
59 10.25 ®
60 10.48
61 10.92
62 11.30
63 11.57
64 12.36 P
65 13.19
66 13.82
67 14.26
68 15.29
69 16.18
70 16.82 o
71 17.26
72 17.56
73 17.99
74 18.49
72 19.09
7 19.93
77 20.64 v
78 21.21
79 21.66
80 22.02 j




®
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s TABLE A-1 Concluded ,
r
[ Number of Attackers Expected Value Destroyed
® 81 22.50 -
82 22.97
83 23.39 .
84 23.72 :
85 24.08 .
. 86 24.41 X
® 87 24.69 ~
88 24.93
89 25.15
90 25.31
91 25.41 ;
92 25.57 .
93 25.66 "
94 25.73 .
o5 25.79 A
96 25.84 :
97 25.87 .
98 25.90 .
99 25.93 N
100 25.94 A
.
X
r
(
;
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APPENDIX B
THE SHOOT-TO-KILL STRATEGY
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I have considered the following situations as in Section II:

* target values 10, 8, 5,2, 1

* terminal defense of 10, 8, 5, 2, 1

* area defense of 5 with impact point prediction
* attack level variable

* perfect interceptors and perfect weapons.

The problem is to determine the optimal attack, i.e., the one that has the highest
expected damage. R.M. Soland has written an algorithm to solve this problem. There is
however a simple procedure to produce a non-trivial lower bound for the expected damage.

The procedure relies upon the "shoot-to-kill" as "guaranteed damage" strategy.
With five area interceptors available to the defense, the offense can guarantee damaging the
first target with 10 + 5 + 1 = 16 attackers directed at it. Similarly, the second target will be
damaged by 14 attackers, the third by 11, the fourth by 8, and the fifth by 7. The "shoot-
to-kill" strategy is the one where the offense picks the targets it wishes to and can destroy y
with its available attackers and then applies the number of attackers to those targets in order ;
to guarantee killing them. Thus the problem reduces to simply determining the wisest
choice of targets to attack.

For example, with 20 attackers the offense can damage the following combinations
of targets: any of the individual targets; targets 4 and 5; targets 3 and 5; targets 3 and 4.
For these possibilities, the expected damages are 1, 2, §, 8, 10, 3, 6, 7. So, we see that
the best attack is to overwhelm target 1, for an expected damage of 10.

Carrying out this procedure for a range of attackers we find the following:

B-1 .
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..........



SHOOT-TO-KILL

B=3 B=15 B=25 B=35
0-6 0-16 0-26 0-36
7 17 27 37
8-10  18-20 28-30 38-40

11-13  21-23 31-33 41-43
14-15  24-25 34-35 44-45
16-22 26-42 36-62 46-82
23 43 63 83
24 4 64 84
25-26 45-46 65-66 85-86
27-29 47-49 67-69  87-89
30-36 50-66 70-96  90-126
37 67 97 127
38-40 68-70 98-100 128-130
41-47 71-87  101-127 131-167
48 88 128 168
49-55 89-105 129-155 169-205
56+ 106+ 156+ 206+

.......................

B-2
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Number of attackers required to obtain a specific damage
level using the shoot-to-kill strategy in the cases where the
area defense has ipp and consists of 5,15,25,35 interceptors.
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APPENDIX C
A MATHEMATICAL DISCUSSION OF THE KNAPSACK GAME
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A TWO LAYER ONE AREA DEFENSE WITH IMPACT POINT
PREDICTION

PERFECT ATTACKERS AND PERFECT DEFENDERS

A. Algorithm for the Knapsack Game When There Are Many Objects of
Equal Value

We shall first consider the case where all of the targets are of equal value.

There are t targets each of value V. There is a terminal defense of V perfect
interceptors at each target and an area defense of B perfect interceptors. The area defense
has impact point prediction, which means that the area defense can be allocated after the
defense observes the attack.

The problem we will solve is to determine the minimum number of RVs the attacker
needs in order to guarantee destroying r targets, where r varies between one and t.

Mathematically, the problem is to determine the least A such that

MAX MIN Y fa(i), @) = r.
; a(i) S A ;{:d(i) <B
a(1) eN 1)EN

where
o aen _ J1if V+d(@) 2 a(i)
DD = 10 i vadi) < ag)
and
N = {0,1,2,...}.

It is easy to see that for any value of A, among the set of optimal attacks will be one having
for each i

either a(i) > Vor a(i) = 0.

'j
g

Hence, we may restrict our attention to such attacks. Suppose then that the attacker attacks
n targets, where r < n S t. If the attacker is to guarantee destroying r targets, then he cannot
allow the defense to save (n-r)+1 targets. Thus, i

C-1
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*) Y (@i g)-V) 2B+l
(o

for any n—r+1 distinct subscripts {ig}-

If we add the (n _nr+ l) different inequalities above, we find that

n-r+1

T
(**) l;l(a(l)-V) 2 Il (B+1)

Let us renumber the targets so that
a(i) < a@)
fori < j .
From inequality (*) we have
@)-v) + (a(2)-v) + ... + (a(n-r+1)-v) 2 B+1.
By the pigeonhole principle

(a(n-r+1)-v) 2 B&Q— }

r+1

Thus,

a@i)-vz nf_i_:-.;l_i fori > n-r+l.

In order to minimize the required number of attackers, we should have

n-r+1
(a(i)-v) = B+1
=1
with
a(i)-vs E?Tzll for i=1, ..., n-r+1
and

a(i) = 'nggl' fori=n-r+2, ..., n.

We find the total number of attackers to be

C-2

R P R R L N Cem et
B U I S

ST T e T e PR

ST L e e e T e T T T T e T T T
NPT S SN S Y TN IR ST AL ST P 2P S AT P I I S A -SSR S VS NI S




) &

Attackers =nV + (B+1) + (r-1) |-B+1—]

To get the final answer, we minimize this function over n € {r,r+1, ..., t}.

It would be convenient to have an analytic approximation to the minimum number
of attackers so as to perform analyses, draw graphs, etc. Therefore, such an
approximation will be derived.

First we consider the continuous game - where a(i) and d(i) are non-negative real
numbers. We can use an argument similar to the one above to find that the optimal attack is
equally distributed:

a@i) = E{ + V fori=1,2,..,n
and so

Attackers

B+l
n AT +V)

nV+ B+1) + 1) (22).

We now further relax the constraint of n being integral. Thus, the offense is free to choose

the exact value of targets to be attacked. For V small and t large this is probably a valid
assumption.

In any event, we shall use the following combination of notations:
Ajnt refers to the problem where a(i), d(i) e N
Acont refers to the continuous problem

A refers to the problem where n € N.
Thus, Ajnt would be the answer to the original problem, while A.gp¢ is the most tractable
analytically.

To find Acont, We rewrite the number of attackers as

Attackers = (r-1)V + (B+1) + (n-r+1)V + (r-1)

n- r+1 = f(n).

The first two terms are constant, so we don't need to consider them. To minimize
the latter terms, we use the Arithmetic Mean-Geometric Mean inequality which says that the

C-3
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sum of two positive numbers whose product is a constant is minimized when the numbers
are equal, which implies

(n*-r+1)V = (r-l)n he

-r+1

or,
n*r+l = V(r-1) B+1) /V

So,

Acont = =1)V + (B+1) + 2V(r-1) (B+1)V
NTEDV + VBFD )2,

unless of course

n*r+l = V(r-1) (B+1) /V 2 t-r+l

in which case the minimum occurs at n=t, so

= J
Acont- tV+ ——= (B+1).

In order to find Acgnt, we know that n* is at most 1/2 away from the nearest

integer. And we know that f"(u) is decreasing, so
Kc ont S Max (f(n*+1/2),f(n*-1/2)) = f(n*-1/2).
Substituting this in, we see that

Acont < Acont + (f(n*~1/2) ~ A onp)

1/4 'V

ACont *
N EDED

v
= Acont ¥ I —r1172) -

If n* 21t, then

A A

cont — “cont *
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Finally, to get a bound on Ajn¢, we see that for all n,

1 B+l
(r-1) E_’;H < (1) —”_H—Is (r-1) _E;;i_l + @-1).

Therefore, we have

. ° _ _ _ ]
ACOﬂt s ACOl’lt s ACOﬂt + (I‘ 1).

Comoining all three inequalities, we get

- - —Y_
SAL S Aot * DS A0t (-1 + o)

ACOU( s Acont

and if n* <t,

<A + (r-1) = Aint + (r-1).

=A <A,
A cont A cont ™~ Amt cont

. . It is possible to derive a lower bound for A int DY considering A int.
The number of attackers for the integral solution is
B+1
Attackers = (r-1)V + (B+1) + (n-r+1) V + (r-1) rmr-l

which we wish to minimize for n € [r,t].

Letting B = n-r+1, so that B € [1,t-r+1], the number of attackers can be rewritten

.O Attackers = (-1) V + (B+1) + BV + (r—-l)-BB"'—l]_

The graph of this function is a series of line segments of slope V, with end points at

B: B;l andB—BLl
i Ti-1
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which looks something like )

BV +(r=1)V+(B+1)

] | |
B+1B+1 B+t B+1
4 3 2

10-8-88-1

T
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o
) The minima will obviously occur at 2:—1 where i is the largest integer such that ;
L :
v (&g - Bd) 2 _
O i.e.,
o
4V(B
. |-1 . -\/ 1+ _;ET.tl.) J
2
o unless E%L > t-r+1, in which case
B+l | .
* = |t ‘
j & In either case,
: Aint=(i*+V) (-1 +BEL) ,
2 ° which is another lower bound for A;, -
7 B. Algorithm for the Knapsack Game When There Are Many Objects of
i Unequal Value
° Using the insight gained from section A, we can now outline an algorithm for the
case of unequal target values. .
Suppose the targets are valued v(i) with |
v(l) 2v(2) 2.2 v(T).
’ ¢ One way to solve the problem is to postulate an attack level A and then enumerate all of the
[ attack vectors
. a= [a(l)’ 3(2), ceny a(T)]
N with 5
0<ai) £ A A
¢
and
3 ‘
!
C-7 i
d
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Yad) = A.

For each one of these attack vectors, the defense has a knapsack problem to solve, i.e.,
MAX Z Z;v;
such that Dzfiai) < B
z;e{0,1}
where
fi(x) = max(x-v(i),0).

The number of attack vectors to be examined (and hence knapsack problems to be
solved) is on the order of AT'I, which is beyond feasibility when considering attacks on
large target sets.

In the case of perfect attackers and interceptors, it is simple to prove that optimal
attacks are monotone in their excesses on targets attacked. In other words, if i<j (so v(i) 2.
v(j)) and a(i) = 0 a(j) = 0, then

a(i) - v 2 a@g) - vQ).

Using this we can diminish the number of attack vectors considered by roughly a factor of
T!, so the number of knapsack problems to be solved is still on the order of A(T-1),

Sabbagh's implicit enumeration algorithm does not fare any better because the
"jumps” in the implicit enumeration scheme are not sufficiently large to significantly
decrease the number of attack vectors considered.

The algorithm outlined below attempts to circumvent the computational size of the
above algorithms in the case where there are many targets of the same value by means
similar to the ones employed in part A. The algorithm must solve at most

G
II (@) + 1)

i=1

linear integer programming problems, where n(i) is the number of targets of value v(i) and
G is the number of distinct target values.

C-8
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In order to make the discussion as concrete as possible, we will consider the
following problem:

6 targets of value 4

4 targets of value 7
Required damage level = 25
Area defense = B

We wish to determine the minimum number of attackers needed to obtain a value destroyed
o of 25.

Figure C-1 shows the set up for the algorithm. Along the x-axis is the number of
targets of value 7 and along the y-axis is the number of targets of value 4. The boundary
line for u=25 satisfies the equation
¢

5mtE =1 -
Points to its left represents target combinations that sum to less than 25 value and points to
its right more than 25. The 19 integer points on the line or to its right represent feasible

attack points. We shall examine the one circled, which represents the attacker attacking
three targets of value 7 and 4 targets of value 4. Let x;(i=1,2,3) be the excesses of the

attacks against the targets of value 7 and y;(j=1....,4) be the excesses of the attacks against
the targets of value 4.

The shaded region is the "defense wins" region, which means that if the defender
can save a combination of targets to get within the region, then the postulated attack does
not produce a destruction of 25. For example, if the defense can save 3 targets of value 4
under attack and 2 targets of value 7 under attack, then the offense destroyed only 1 target
of value 4 and 1 of value 7, hence a total of 11, which is less than 25.

Hence, points in the region represent constraints on the x;'s and yj's.
The minimal points represent the smallest set of irredundant constraints. They are

defined as the minimal set of points generating the whole "defense wins" region, where the
point (o) "generates" the rectangular set of points (x,y) satisfying (x,y) € [0,c] x [0,3].

The uppermost minimal point represents the constraint that the defense cannot be
allowed to save any two of the targets of value 7. Hence

C-9
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°
NUMBER OF *
4 VALUE FEASIBLE
TARGETS ATTACKED ATTACK
POINT
@ —
@
L o
/,// > MINIMAL POINTS
““DEFENSE WINS"’ // / °
REGION /
7///7/
70 | .
A,
NUMBER OF BOUNDARY
7 VALUE LINE FOR
TARGETS ATTACKED V=25 -
9-20-85-8

Figure C-1. Geometric Structures in the Knapsack Game Algorithm
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X1 +X22 (B+1)
X1 + X2 (B+1)
Xg + X3 2 (B+1).

The middle minimal point represents the constraint that the defense cannot be
allowed to save 1 target of value 7 and 2 targets of.value 4. Hence

Xg + YB, + By 2 (B+D)
for ct €{1,2,3} and B1,B7 distinct elements of {1,2,3,4] .

The final set of constraints is that the defense cannot be allowed to save all 4 targets
of value 4. Thus,

Y1+Yy2+Yy3+y4 2 (B+1).
What we need to do now is minimize the total attack,
3xT7+X1+X2+X3+4X4+y1+Y2+Yy3+Y4
subject to these constraints.
By summing the first constraints, dividing by 2 and adding the last constraint we
find
X] +X2 +X3+Y[+Y2+Y3+Y4 2 —g— (B+1)
with equality if
X; = 1/2(B+1),yi= 1/4(B+1).

All of the middle constraints are satisfied with these values of x; and y; so we have

found a (potentially non integral) optimal attack. If B=3 (mod 4) then the attack is integral.
If not, we can get good bounds on the number of attackers required by decreasing B by i
and increasing B by 4-i where B=i (mod 4), i€{1,2,3}.

Then we vary the feasible attack point (circled point) to one of the 18 other feasible
points. At each point we solve the problem and take the minimum of all the answers to get
the final result.

This algorithm generalizes immediately to more than 2 distinct target values.
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ne. C. Remarks and Simplications of the Algorithm
b 1. Suppose the feasible attack point under consideration is (c1,B) and we are interested
g}fn in the constraint due to the point (e—a, B-b). Then we know that
22
N inn+ Zyj > (B+1)

(o]

v where
2
"-ii {ir} is any collection of a distinct indices in {1,2, ..., &} and {ig} is an distinct collection
N of b indices in {1,2, ..., B}. If we add up all of the possible combinations, we find that
\- d o b g B

-'.. a . ' -— . a
BNORGRP OGRS A ROIORE
. i=1 =1
E ’: )
.j‘,: so that

-

. & Z’%% Zyi 2 (B+1).
A ‘7:
‘_ .,-: If we now let a,b,c,3 assume continuous values, we can get an analytical lower bound.
ey
:: Suppose we take a and b so that

T o B

R 2a-b

-

' and

~ (@-a)x 7+ (B-b)x4=25-¢

~ € = small constant.

v imit, 2= - =25 andbopoo25

. In the limit,a =0 724 B/l andb= TUBIE

Z! Then the constraint becomes

(1- '7'0%54—3) (X xi+Xyj) 2 (B+1)




b, ‘b imnli . . B+l

e which implies 3 x; + Yy 2 1—*’—2——— :
. - Ja+ 4P
3 Thus
) At>—Bxl | 94 .48,

@ 1 - _Zi_B.
v To+4
N If we minimize this with respect to a,3, we find it's a minimum when
l. 7o +4p = 25 V25 (B+1)
. which implies that

At 2 Bl +25 + V25(B+ D)
. 25 + V25 (B+1)
2
= (VI VBT
unless 25 + Y 25(B+1) 2 TOTALVALUE=4x7+6x 4 =52,
® in which case we would take
7a + 4B =TOTAL VAL,
so that
Aw > —BHl , TOTVAL

hd 1+ ToT VAL
X - B+1
: -TOTVAL{1+ TOT AT % 1 -

B+1
= 52 {1 + —27—
c
2. The algorithm can be simplified somewhat if the exact integral answer is not desired
but just a tight bound on it.
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Suppose there are N distinct target values.

We shall keep the same terminology as in the case of two target groups, except we T

work in n-dismensional space where the boundary line becomes a boundary hyperplane.
Suppose we are investigating the feasible attack point (aty,0t9,03,...,0tp) and are

concerned with the constraints due to the vector (by,by,...,by). As above, if we add all of

q
the possible inequalities, we find
N
b.
1-—==) )x;
igl( o ) z i,k 2 B+1.
Let C be the convex hull of the lattice points in the "defense wins" region. Let ﬁ
P=2d
where
A = sup fA: A 0eCh . N
Write p as
n |
LRPYRIRNCH
J=1
whereB’j = a lattice point in the defense wins region
0swjsS1LYwj= 1 -

i.e., find p's barycentric coordinates.

Since each of the bj's is a constraint vector, we have forall j

N bi :
> (1 -=kl) %xik > B+1.
1=1 % ’

If we multiply the jth equation by w; and add, we find o




o
N X.w.b..
F (1 '_'L'—Jai L1 )in,k 2 B+l
i 1=
: which can be rewritten
[

b il(l-gll—)le’k ZB+1
Thus =

1 2(1-7\.) ZXi’kZB-ﬂ

® and 22Xik 2 H% .

Let
¢
‘ 21-b1,1  z2b12 ... Znby g
:' a2,1-b1,1 92,2-612...62,n-b1n
3
{ -D+AIZI+ ..+AnZn=det * =0 "
h ’
’ *
;’ bn,1721,1 00,2782 bn,nP1,n
. be the equation of the hyperplane through the points by . . ., by,.
If we let Z.
< B+1
Xik = -
% ' (Ajot1+.. +A{Ui+.. +Anon)- D
Aj :
o then all of the constraints will be satisfied, and we will have equality in the constraint for

Ein k » 0 we have obtained the minimum.

However,

:




where t;,s;€Z.

X i’l =
X1,2=
Xi,3 =

Xi, 004

where r

hd Al Sl Al Sl Lol

t:
Xik == (B+1)
1

This is the rational solution.

The integral solution must have x; y¢Z. We can obtain an upper bound on the
number of attackers by letting

4
= E.l— (B+1)
t.
(o;-b;) l;—:— (B+l;| I-(al-b D s (B+1)-I




¢ .
l e
) .

Then the total number of attackers assigned to the ith target group is
A4 S

o Att, = oLV, + l-( ai-bl)g"i'- (B+1)—| +bj I-Eli— (B+1;I
« Thus we have the bound
' o t L4 X

° ivi+dy S—i-(B+1) < Aty < vy + [(@- by sy (B+D)

+ bj I-LL (B+1)-|
5i

< aivi+(ai-bi)st—,i— B+1) + 1 ,'.

1 n
< t:
+ bj # (B+1) + b;
= QjVi+ O ts—‘- B+1) + (bi+1)
[ i

®
j o
1s

«

[ ~
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APPENDIX D

RESULTS WHEN AREA DEFENSE EQUALS 10 PERCENT OF TARGET
VALUE




The twelve charts contained in this appendix demonstrate the difference between ipp
and no ipp for each of the thirty citadels when the area defense equals ten percent of the
target value. On each chart, the solid line represents no ipp and the dashed line represents
ipp. The citadels covered by a specific chart are noted at the top of the chart.
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E The eleven charts contained in this appendix demonstrate the difference between ipp
f and no ipp for each of the thirty citadels when the area defense equals forty percent of the
® target value. On each chart, the solid line represents no ipp and the dashed line represents
d ipp. The citadels covered by a specific chart are noted at the top of the chart.
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The large scale problems considered in this paper in the case of no ipp and area
defense = 100% of value presented large computational burdens. To simplify the
computations, I derived some approximations which may be applied with benefit.

In order to imvestigate the optimal attacks, I supplemented the FORTRAN program |
implementing Soland's algorithm (discussed in Appendix A) by the introduction of the |
variables

attop (i,r) = number of attackers used against target i in an optimal attack when
the offense is attacking the first i targets with a total of r RVs,

and

numb (i) = number of attackers used against target i in an optimal attack against
the whole target.

The values of attop (i,r) are obtained readily as a byproduct of the dynamic programming
algorithm, while the values of numb (i) can be easily obtained from the formulas

numb (T) = attop (T, a)

and

T
numb (i) = attop (i,a - Y numb (j) )

j=itl
35 fori=T-1, T-2,...,1.
%
:', After examining many cases of the optimal attacks, I decided upon two guidelines
L: to aid in the approximations:
b - 1. If the attacker attacks two targets of the same value in his optimal attack, then
;:j : he attacks them with equal numbers of weapons.
;:f: 2. When possible, the attacker attacks more valuable targets rather than less
- valuable targets.
< Needless to say, these two guidelines held true in the many cases I examined.
B
- At this point, I assumed that the targets were equal valued and numerous enough
that the attacker is not limited in his choice of targets. The arrival probability through the
area defense is hypergeometric:
®
A
o
F-1
L;_"
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n RVs arrive, b b
Prob < giventhatx were P = (an % agé —n)
X

fired at the target
. y
where a = number of attackers and b = number of area defenders. I approximate this
hypergeometric distribution by a binomial distribution:

Clre "R S 7 4 £ £ AT Woe'n 1
) )
J

- e

: — :
n RVs arrive,
Prob < given that x were §» 2BEIOX- (ﬁ) P q",
fired at the target
. o

where p=b/a and q = 1- b/a.

Now I formulate the optimal attack problem as

Max Y (%) (1-vd)” ) T

x € {v+1,v+2,...} n=r+l

The second term in the product is the Incomplete Beta Function for which I found
the following approximation:

a+hH-1
2 _ a+b—1-n

Lab=y (1" -0 £
n=a
~ P(y) +¢, ‘
where -JI
.
€ <5x103ifa+b>6and@+b-1)(1-x) <.8 -
and '_:
N
-~

A Y e
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®
1
. , . 3bG-gh-w (-5)]
- 2
b a
w; = (bx) 173
® 173
wy=(a(l- xg,)
2
1 =172t
P(y)= — I dt .
) gE e
® L o
Furthermore, P(y) has the following rational approximation:
P(y)=1-1/2(1 +ayy + apy2 + agy3 + a4y4)y 4 + ¢
where
¢ el < 2.5 x 104
and
a; =.196854
@ a = 115194
a3 =.000344
agq = .019527 .
® If these two approximations are used on Iq (v + 1, x —v), then we can numerically
maximize the product
-’%Iq(v+ 1, x-v)
C for x greater than v, assuming the values of v and b/a to be given.
The results are plotted in Figure F-1 which shows B vs. b/a for different values of
v. The quantity B is defined by
€ = 100 optimal RVs/target _ 1)
B (v/lq) .
o
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@
I A R g A N S



Ei.x T et L R P TE LURT Su 3gt Db G- - sie™ ut e et e A i it R s e IV E RO R S g o BA SN ES tLy

-

A0S 2,

Pt R

-nll"‘.‘

P i N M)

4»'.~.-r.~.r.'..'~ o

o A L

‘\'\\'\-\\

BETA, THE OVERSHOOT PERCEMNTAGE

70

.f\

50

a7

P

A

10

/
/

I/

"y

e
/-

e
"

/

e
[~
Q

N
Q
Q

Figure F-1.

.'.-'.‘.~‘.> AN
\‘.\‘-\‘-\\\\

20 —
1|%/ﬁ/r/’

.............

1.0

Optimal Overshoot Percentages

PR S Es tL SRR LN L1, |

BEWANIT (1 PWWWSRRWS S EWSFFP. i L S

. TR 3 N e,




’

O (AR T L ) . .
%2 \11.'?-\&-?‘.‘4‘?-‘55:“.& o yAY AN

Figure F-2 shows the probability of kill in the optimal attack. Together these two

® charts are the basis of finding the approximate optimal attack. As an example, consider
citadel 29 and 1400 attackers. Using Figure F-1, we find that
Value Optirnal Number of Attackers Py
o ' 200 503 .9786
100 260 .9685
20 58 9213
~ ™ 5 17 .8286.

With 1400 weapons, the attacker will use 503 against the 200 value target, 260
against the 100 value, 58 against each of the 4 targets of value 20 and 31 against 13 targets ‘
of value 10. Two RVs will be left over. Summing up the expected damages at each target,
we find that the total expected damage is 481.10.

This method was followed to generate the no ipp curves for each of the individual
citadels. The ipp curves were generated as before with a combination of shoot-t0-kill and
defense dilution strategies. The individual citadels were then integrated into a nationwide
system by using dynamic programming.

Table F-1 summarizes the differences of RVs required with no impact point
prediction and with impact point prediction in selected cases. Table F-2 gives numerical
gy details, and Figure F-3 displays the aggregate information. The remaining figures dispiay
: resuits for citadels in the'same format as in Appendix D and E for the 10 percent and 40
percent cases.

Table F-1. AREA DEFENSE = 100% OF VALUE

l‘ f o
Y l ]
Y

:

:j_-.- Number of Attackers P

54 . . ercentage
N Value  Noipp ipp Difference mm_éq_
. 4450 11,100 24,805 13,750 123.87%
o (1/4)

,:;\‘: 8,900 22,600 50,800 28,200 124.78%
0 (112)

2 13(,33/2()) 34,250 84,950 50,700 148.03%
é - 17,800 47,050
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Table F-2. TARGET SET OF 30 CITADELS

j o Area Defense = 100 percent of value
' Attackers no ipp ipp
1000 372 200
2000 784 400
® 3000 1214 604.5122
4000 1591 817.4713
5000 2042 1017.471
6000 2425 1217.471
' 7000 2836 1393.939
L 8000 3230 1566.130
: 9000 3622 1737.484
p 10000 4023 1909.048
11000 4412 2080.798
( 12000 4813 2252.357
C 13000 5202 2424.009
14000 5586 2595.466
15000 5992 2868.117
/ 16000 6377 2938.561
‘ 17000 6756 3110.201
L 18000 7151 3281.761
19000 7534 3453.333
20000 7917 3624.869
21000 8299 3796.405
® 22000 8681 3967.983
23000 9064 4139.537
: 24000 9447 4311.188
25000 9830 4482.627
y 26000 10213 4654.273
) C 27000 10595 4825.741
' 28000 10978 4997.365
29000 11361 5168.940
30000 11741 5340.476
31000 12124 5512.001
C 32000 12507 5683.561
33000 12890 5855.146
34000 13273 6026.652
35000 13645 6198.212
K
F7
| ©
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Table F-2 (Continued) d
Attackers noipp ipp
36000 14028 6369.749
37000 14411 6541.273
38000 14781 6712.849 PN
39000 15150 6884.418
40000 15536 7055.943
41000 15913 7227.484
42000 16280 7399.020
43000 © 16658 7570.545 Py
44000 17041 7742.121
45000 17349 7913.646
46000 17600 8058.171
47000 17795 8256.610
48000 17800 8428.137 P
49000 17800 8599.755
50000 17800 8771.280
51000 17800 8942.657
52000 17800 9114.442
53000 17800 9285.490 P
54000 17800 9455.623
55000 17800 9623.533
56000 17800 9790.361
57000 17800 9947.421
58000 17800 10109.54 ®
59000 17800 10268.95
60000 17800 10426.43
61000 17800 10587.74
62000 17800 10740.23
63000 17800 10897.48 P
64000 17800 11050.45
65000 17800 11207.02
66000 17800 11356.84
67000 17800 11503.34
68000 17800 11649.84 ®
69000 17800 11791.78
70000 17800 11926.73
Continued
o
F-8
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Table F-2 (Continued) :
f Attackers no ipp ipp :
, 71000 17800 12055.48 -I
B 72000 17800 12177.28
| 73000 17800 12293.63
{ 74000 17800 12404.39 y
1 75000 17800 12510.41 1
' 76000 17800 12611.87 X
® 77000 17800 12708.53
78000 17800 12801.39
- 79000 17800 12890.34
s 80000 17800 12975.64
‘ 81000 17800 13057.68
' c 82000 17800 13136.09
83000 17800 13212.00
84000 17800 13284.88
85000 17800 13355.02 o
, 86000 17800 13422.77 ,
® 87000 17800 13488.64
88000 17800 13554.51
89000 17800 13620.38
90000 17800 13684.86 g
. | 91000 17800 13747.02 :
° 92000 17800 13807.03 : g
93000 17800 13864.74 !
94000 17800 13920.50 :
95000 17800 13974.53 g
96000 17800 14026.69
¢ 97000 17800 14077.42 -
98000 17800 14126.52 N
99000 17800 14174.13 3
100000 17800 14220.42
<
€
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Figure F-3. Difference between ipp and no ipp for a representative
nationwide target set when the area defense is equal to
100 percent of the target value.
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